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Abstract

Proteomes are well known to poorly correlate with transcriptomes measured from the same sample.
While connected, the complex processes that impact the relationships between transcript and protein
quantities remains an open research topic. Many studies have attempted to predict proteomes from
transcriptomes with limited success. Here we use publicly available data from the Clinical Proteomics
Tumor Analysis Consortium to show that deep learning models designed by neural architecture
search (NAS) achieve improved prediction accuracy of proteome quantities from transcriptomics. We
�nd that this bene�t is largely due to including a residual connection in the architecture that allows
input information to be remembered near the end of the network. Finally, we explore which groups of
transcripts are functionally important for protein prediction using model interpretation with SHAP.



Introduction

The central dogma of biology posits a linear �ow of information from genetic encoding to mRNA
transcripts to functional proteins. However, this seemingly straightforward relationship belies a more
intricate reality, where the interactions between omic layers are multifaceted and complex.
Elucidating these relationships is crucial for understanding biological systems in both healthy and
diseased states. By disentangling these interactions, researchers can identify markers and patterns
speci�c to complex diseases, ultimately enabling the development of targeted treatments.

Among the multi-omic data type relationships, the connection between transcripts and their
corresponding proteins is particularly enigmatic. Despite being quanti�able and having a direct
derivative relationship, their relative quantities often exhibit only weak correlations [1], [2]. Research
has identi�ed several possible causes for this discrepancy, including alternate rates of protein
generation and decay [3], [4], [5], varying reactions to environmental stimuli [6], [7], or simply
systematic experimentation error bias [8], [9]. Recent works have even found that the most predictive
transcripts of a protein include those that are involved in protein-protein interactions [10]. While
predicting protein quantity through direct transcript-to-protein correlation remains elusive, using
contextual transcript information may reveal more complex proteomic-transcriptomic relationships
that could be leveraged to predict one from the other. Moreover, predicting proteins from transcripts
could reduce the time and �nancial costs associated with future studies, as transcript quanti�cation is
generally easier to accomplish than protein quanti�cation [11].

The National Cancer Institute’s (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) provides a
valuable resource for exploring this issue, o�ering multi-omic datasets that enable research into
healthy and cancerous disease states [12]. Speci�cally, CPTAC datasets comprise transcriptomic and
proteomic data (among others) from various cancer types and adjacent healthy tissue, which makes
this data useful for detection of inter-omic relationships. Several research collaborations have
occurred to use this data to study RNA-protein relationships. The 2017 NCI-CPTAC DREAM
Proteogenomics challenge [13/], a sub challenge of which aimed to predict protein quantities from
transcript abundance, is a notable example. Contestants used a variety of methods, including random
forest regression, genetic models, spline regression, linear regression, and elastic net methods, as
well as ensemble combinations [14]. Using a test set only from breast cancer and ovarian cancer, the
winning model achieved a pearson correlation of 0.41 and 0.47 between the true and predicted
protein quantities, respectively [15]. Notably, deep learning neural networks were not strongly
represented in the challenge results.

Since the close of the challenge, research into deep learning has expanded signi�cantly, with a focus
on replicating human behaviors like computer vision and natural language processing (NLP). However,
the underlying principles of deep learning are equally applicable to biological data [16], [17], [18]. The
key challenge lies in developing a model architecture that best �ts a given problem. One underutilized
strategy for deep learning model design is the NAS [19]. NAS serves a function like hyperparameter
tuning, in that a range of values for speci�c hyperparameters are evaluated to obtain the optimal
con�gurations. In the case of NAS, the concept is expanded to include model architecture in addition
to hyperparameters, designing optimal and unique model architectures in an automated fashion.
While NAS has been applied to genomic data [20], its application to predicting proteomic data from
transcriptomic data remains unexplored.

We previously showed how machine learning can accurately predict the metabolome from the
proteome, and how model interpretation revealed important biological insights [21]. Here, we extend
that work to transcript-to-protein deep learning prediction models and demonstrate that utilizing NAS
improved the accuracy. Furthermore, we highlight the potential of model interpretation to identify



patterns in transcript-protein relations that underpin biological processes characteristic of a disease
state.



Methods

Data Acquisition and Preprocessing

To facilitate readability and reproducibility, the code for downloading, processing, and splitting data
was developed as a multi-class in-house package. The bridge design pattern speci�cally was used to
allow for interchangeability of data source input to expand beyond CPTAC in the future, as well as for
allowing custom processing and splitting depending on the experiment. This involved writing an
abstract parent data processing class, and individual child classes would utilize compartmentalized
class components speci�c to the experiment. This was done to enable external researchers to trace
data processing work�ows with ease.

CPTAC data was downloaded directly from zenodo using the cptac python package [22] separately for
each cancer type. Analyses were only performed using transcripts and proteins common between all
datasets.

Cancer-speci�c datasets were normalized independently of one another. For experiments where each
dataset required an identical train-validation split, this normalization was calculated on the training
partition then applied to the training and validation partitions both. For the �ve by two cross
validation experiments, it was determined that dataset-speci�c analyses would be enhanced by the
inclusion of all other datasets in the training dataset [Supplementary Figure 1]. In these instances, the
train-validation split was applied only to the target dataset, with a split of 0.45, 0.45, and 0.1 for
training, validation and testing, respectively. All non-target datasets were normalized on the entire
dataset as the training partition, ignoring validation or testing partitioning entirely. In a standard data
partition, each dataset had a split of 0.8, 0.1 and 0.1 for training, validation and testing, respectively.

The �nal dataset contained data for breast cancer (BRCA), kidney cancer (CCRCC), colon cancer
(COAD), brain cancer (GBM), squamous cell cancer (HNSCC), lung cancer (LSCC and LUAD), ovarian
cancer (OV), and pancreatic cancer (PDAC) as well as adjacent healthy tissue. 59286 transcripts and
7822 proteins were shared across all datasets with a combined number of 1256 samples.

NAS

The search space used in this study chose a model architecture consisting of three segments, or
blocks, of sub-architectures. These blocks could vary in number of neurons, number of layers,
activation functions between layers, intra-block residual connections, dropout rates, or be removed
entirely to simplify the network. It was determined that while mRNA to encoded protein quantities are
not directly correlated, the quantity of one likely has a strong impact on the quantity of the other.
Thus, the search space also included a residual connection inserting mRNA input quantities for
proteins being predicted right before the �nal output layer of the network.

The NAS work�ow was based on the “Multi-Objective NAS with Ax” work�ow tutorial on the o�cial
pytorch website [23], utilizing Meta’s Ax package to do so. The process includes designing a search
space as a separate python script that accepts variables that dictate the model structure, setting up a
torchx runner and scheduler for submitting model training scripts concurrently, and de�ning
optimization requirement con�gurations. Ax uses Bayesian optimization to evaluate and compare
model con�gurations and their predictive accuracy, highlighting the impact speci�c architecture
decisions have on the �nal loss.

Model Evaluation and Comparison



Losses between predicted and true outputs were calculated using mean-squared error. The dummy
regressor identi�ed the mean of the true output data and used it as the prediction of all data points.
The random forest regressor was run with log2 max feature and 50 node max depth limitations, as
the number of inputs and outputs in creating a forest of full trees would otherwise require upwards of
years to calculate. The manually designed model consisted of two hidden layers with output sizes of
12k, and 10k, respectively. Hidden layers employed batch normalization, a dropout rate of 0.6, and
used the leaky ReLU activation function with a negative slope of 0.05 [Supplementary Figure 2]. The
NAS-optimized model consisted of three blocks of layers, followed by a single output layer. The �rst
block consisted of a single neural layer with 319 neurons, a sigmoid activation function, a dropout rate
of 0.52. The second block consisted of three neural layers with 508 neurons, a sigmoid activation
function, a dropout rate of 0.69, and a residual connection skipping the middle layer. The third block
consisted of a single neural layer with 7822 neurons (the output size), a tanh activation function, and a
dropout rate of 0.9. The optimal model also sported a batch size of 128 and a learning rate of 1e-4.

Model Interpretation Using SHAP Values

SHAP values [24] were calculated using all available samples from CPTAC used in training and
validation of the optimal model, which included the direct transcript residual connection. SHAP values
for the top 13 accurately predicted proteins across cancers using the NAS optimized model were
extracted and graphed independently, speci�cally CAVIN1, FERMT2, FLNA, HCLS1, TK3, MCM3, MCM4,
MCM6, P4HB, PTPN6, SMC2, STAT1, and VCL. MMP14 was included as a candidate because of its role
in cancer regulation. SHAP values for targeted proteins were extracted and analyzed independently of
the raw SHAP outputs for memory e�ciency purposes.

Direct transcripts were determined by directly matching gene names to the list of predicted proteins.
A cuto� of -15 mean absolute SHAP value was chosen to separate correlated and uncorrelated
transcripts. Transcripts that had an absolute mean SHAP value above -15 in at least 70% of the chosen
proteins were determined to belong to the correlated category. Transcripts that had a null or 0 SHAP
value were excluded from categorization.

A SHAP analysis was also run on 3 variations of the optimal model, speci�cally models with no input
residual connection, a correlated transcript residual connection, and an uncorrelated transcript
residual connection. To accommodate residual connections of varying lengths, the output size of the
third block and the input size of the �nal output layer were altered to match the size of the residual
connection for these adjustments.

Code Availability

CPTAC data was downloaded using the cptac python package [22]. All models were developed using
Pytorch [25] and Pytorch Lightning [26]. NAS was implemented with Meta’s Adaptive Experimentation
Platform (Ax) [27]. NAS evaluation metrics were tracked with tensorboardX [28]. Scikit-learn was used
to perform train-validation splits and several non-neural net regression models [29]. Pandas was used
to load, process and save CPTAC data [30]. Numpy was used to perform various calculations [31].
SHAP was performed with the shap python package [24].

Code for data processing and model training and evaluation can be found at
[https://github.com/xomicsdatascience/RnaToProteinDataModule]. Classes for data processing and
model generation can be found in the src directory, while scripts for running the di�erent
experiments can be found in the scripts directory.

Large Language Model Edit



This paper was re�ned for human readability using Meta’s Llama 3 Large Language Model [32/].



Results

CPTAC Model Con�guration

The CPTAC dataset provides a unique opportunity to investigate the relationships between multi-omic
layers, particularly in predicting the proteome from transcriptome data [Figure 1A]. A range of
approaches were employed to achieve this, including one-to-one mapping of mRNA transcripts to
proteins compared with various regressors: dummy, linear, random forest, and neural networks
[Figure 1B]. The latter proved to be the most variable, with di�erent architectures yielding diverse
predictive accuracies. To address this, a NAS was utilized to automate the selection of optimal neural
network architectures [Figure 1C]. The NAS approach iteratively evaluated various model architectures
from a search space to identify the most e�ective structure for predicting protein quantities from
transcriptome data [Figures 1C, 1D]. The optimal NAS model was benchmarked against other models,
including a dummy regressor, and its performance was evaluated using a 100x2 cross-validation
metric across di�erent cancer types. The results showed that the optimal NAS model consistently
outperformed all other models, including the previously optimal random forest model [Figure 1E,
Supplementary Figure 3].

Figure 1:  Comparison of methods for predicting the proteome from the transcriptome. (A) CPTAC cancer datasets
were downloaded from the web and processed to match samples across omic layers. (B) Four primary methods were
evaluated for predicting the proteome from the transcriptome. They are a dummy regressor to serve as a benchmark, a
random forest regressor, a manually designed neural network, and an optimized neural network chosen via NAS. (C)
The primary outline of the NAS search space used to identify the optimized neural network. (D) The model architecture
of the optimized neural network. (E) A comparison between the four methods via 100x2 cross validation, indicating the
optimized neural network outperforms all the others. While the Y-axis was shortened for visibility, a rendering was
provided in Supplementary Figure 3 that captures the full boxplot whiskers.

Model Performance and Correlation Analysis



Given that the proteome and transcriptome do not reliably correlate with each other, a correlation
between predicted protein quantities and actual protein quantities was calculated. An example of the
RNA/protein correlation for BGN is shown in Figure 2A, while the true versus neural network-
predicted value of the protein is shown in Figure 2B. R2 scores were calculated between transcripts
and proteins, as well as predicted proteins to actual proteins, and compared to the benchmark
transcript-to-protein correlation. These analyses revealed that the predictions from the model greatly
improved the prediction for this example protein. Additionally, it was assessed whether a simple
linear model could su�ciently correlate predicted proteins with actual proteins. The results revealed
that the optimal NAS model outperformed both the direct and linear evaluations, highlighting its
e�ectiveness in predicting protein quantities from transcriptome data. A global view of the R2 score
distributions for each of the three relationships across all 7822 genes showed that our neural network
from NAS performed best [Figure 2C].

Inspection of the optimal NAS model’s architecture identi�ed key components, including a single-layer
block, a three-layer block with a residual connection, and a �nal single-layer block with a tanh
activation function [Figure 1D]. Notably, the mRNA residual connection played a crucial role in the
model’s accuracy. To quantify the impact of each component, individual components were selectively
removed or nulli�ed to determine their impact on the output, revealing that the mRNA residual
connection had the most dramatic e�ect on the model’s performance [Figure 2D].

A B
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Figure 2:  Evaluation of the impact and design of the NAS-optimized neural network. (A) Comparison of the
normalized transcripts quantities against the matching normalized protein quantities of the validation dataset for the
BGN gene. Note that the values have a negative R2 score, indicating little to no correlation. (B) Comparison of the
normalized predicted output quantities against the matching true normalized protein quantities of the validation
dataset for the BGN gene. Note the change in R2 score, indicating strong correlation. (C) Validation set R2 scores for
every protein evaluated by the model. The di�erent bar colors indicate which dataset the true protein quantities were



compared to, speci�cally matching mRNA quantities (blue), the output of a simple linear regression mapping (orange),
and the output of the NAS-optimized neural network (green). (D) An evaluation of the di�erent unique components of
the NAS-optimized neural network. Corresponding to the search space summary, the categories map to (1) removal of
the �rst block, (2) removal of the second block, (3) removal of the residual connection in the second block, (4) changing
the dropout rate of the third block, 0.9, to match that of the �rst block, 0.52, (5) removing the residual connection from
the input to the immediately before the output layer, (6) the unchanged optimized model, and (7) using a sigmoid
activation function for the third block instead of the NAS-determined tanh activation function.

Biological Feature Analysis and Model Improvement

To uncover biological features underlying the transcriptome-proteome relationship, a Shapley
Additive Explanation (SHAP)[24] analysis was performed to identify key transcripts correlated with
protein quantities. The results showed that mRNA transcripts emphasized by the mRNA residual
connection had distinctly higher average absolute SHAP values, highlighting the importance of this
connection. Furthermore, a clear distinction was observed between transcripts correlated with
protein quantity and those that were not, with the former exhibiting higher SHAP values. These
transcripts were categorized as direct, correlated, and uncorrelated, respectively [Figure 3,
Supplementary Figure 4].

A B C

Figure 3:  Model interpretation evaluating transcript impact on speci�c protein predictions. SHAP analysis was
performed for several of the most well-predicted proteins using all samples in the dataset. As a correlative benchmark,
the spearman coe�cient between each transcript quantity and the speci�c protein quantity was also determined. A
spearman coe�cient of 0 indicates no correlation while negative or positive values indicate negative or positive
correlation, respectively. A kernel density graph (KDE) was plotted for mean absolute SHAP (y axis) versus spearman
coe�cient (x axis) for each transcript’s relation to (A) MCM6, (B) VCL, and (C) FERMT2 proteins speci�cally. Three general
patterns of transcripts appeared, namely a high-impact group, a semi-correlated mid-impact group, and an uncorrelated
low-impact group.

Direct and correlated transcripts might serve similar roles in predictive performance and the residual
connection using direct transcripts may bias their importance according to SHAP. Instead,
incorporating correlated transcripts into the residual connection could enhance the model or alter
their importance. To test this, the input residual connection was manually con�gured to allow for
di�erential insertion of each transcript category. The results showed that insertion of each group into
the residual connection had a di�erent e�ect on model performance and their SHAP values; while
uncorrelated transcripts had a marginal impact on model accuracy, direct and correlated transcripts
signi�cantly improved predictive performance. Notably, direct transcripts had the largest impact, but
correlated transcripts also demonstrated a substantial e�ect, suggesting a relationship between these
transcripts and the predicted proteins [Figure 4]. It is also notable that groups promoted with a
residual connection had a consistent corresponding boost in SHAP values, indicating a relationship
between model architecture and interpretability.
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Figure 4:  Evaluation of the input residual connection impact using several di�erent categories of transcripts.
Kernel density estimation (KDE) for the MMP14 protein. Di�ering categories of transcripts were applied as the input
residual connection, and the resulting impact on SHAP values between each category was plotted. The training loss for
each model is included as a benchmark, with red text indicating high loss values and green text indicating low loss
values. (A) Evaluation of the model where the input residual connection was removed entirely. (B) Evaluation of the
model where only transcripts that directly matched to target proteins were used in the residual connection. (C)
Evaluation of the model where only non-direct transcripts above a log absolute mean SHAP value of -15 were included in
the residual connection. (D) Evaluation of the model where only non-direct transcripts below a log absolute mean SHAP
value of -15 were included in the residual connection. Notably, each time a group is used as an input residual
connection, the general impact of group members exceeds transcripts outside the group. The direct transcript model
ultimately outperforms all others by mean-squared error (MSE) loss metrics.

The types of transcripts in each category di�ered in proportion. While the direct transcripts consisted
entirely of coding proteins, the correlated and uncorrelated transcripts had di�erent mixtures of
various RNA types. The correlated transcripts emphasized long non-coding RNAs and indirect protein
coding mRNAs, while uncorrelated transcripts emphasized processed pseudogenes, though all three
types were found in both groups [Figure 5, Supplementary Table 1]. Overall, the �ndings highlight the
importance of optimizing neural network architectures and incorporating biologically relevant
features, such as mRNA residual connections and correlated transcripts, to improve the prediction of
protein quantities from transcriptome data.

BA

Figure 5:  Evaluation of the functional composition of experimentally-derived categories of transcripts.
Transcript experimental categories are (1) direct transcripts, (2) correlated transcripts, (3) uncorrelated transcripts, and
(4) transcripts in the dataset with zero quantity in the analyzed samples. Transcript functional categories are (1)
‘IG_V_gene,’ or immunoglobulin variable chain genes, (2) ‘IG_V_pseudogene,’ or inactivated immunoglobulin genes, (3)
‘TEC,’ or transcripts to be experimentally con�rmed, (4) ‘TR_V_gene,’ or T-cell receptor genes, (5) ‘lncRNA,’ or long non-
coding RNAs, (6) ‘miRNA,’ or microRNAs, (7) ‘miscRNA,’ or miscellaneous other RNAs, (8) ‘processed_pseudogene,’ or
pseudogenes that lack introns, (9) ‘protein_coding,’ or transcripts that contain an open reading frame, (10)
‘rRNA_pseudogene,’ or non-coding ribosomal RNAs predicted to be a pseudogenes by the Ensembl pipeline, (11) ‘snRNA,’
or small nuclear RNAs, (12) ‘snoRNA,’ or small nucleolar RNA, (13) ‘transcribed_processed_pseudogene,’ or pseudogenes
that lack introns and have expression indicated by locus-speci�c transcripts, (14) ‘transcribed_unitary_pseudogene,’ or
pseudogenes where the presence of locus-speci�c transcripts indicates expression and there is an active orthologue in
another species, (15) ‘transcribed_unprocessed_pseudogene,’ or pseudogenes with introns and have expression
indicated by locus-speci�c transcripts, and (16) ‘unprocessed_pseudogene,’ or pseudogenes with introns. (A) Heatmap of



proportions of transcripts across experimental categories. (B) Heatmap of proportions of transcripts across functional
categories.



Discussion

The results of this study demonstrate the potential of NAS in optimizing deep learning models for
predicting protein quantities from transcriptome data. By automating the selection of optimal neural
network architectures, we were able to identify a model that consistently outperformed other
approaches, including random forest and linear regression. The importance of incorporating
biologically relevant features, such as mRNA residual connections and correlated transcripts, was also
highlighted.

The NAS-optimized model’s ability to predict protein quantities from transcriptome data with
improved accuracy has signi�cant implications for the �eld of proteogenomics. By leveraging the
strengths of deep learning and multi-omic data, we can gain a better understanding of the complex
relationships between di�erent omic layers. This, in turn, can lead to the identi�cation of novel
biomarkers and therapeutic targets for diseases. We expect that as larger and larger datasets become
available for training; the approach we outlined here will improve this prediction further.

The SHAP analysis revealed several distinct categories of transcripts that had varying degrees of
impact on protein quantity prediction. These �ndings suggest that the model can capture biologically
meaningful patterns in the data, and that the incorporation of correlated transcripts can enhance
predictive performance in future models. Although the residual connection clearly biased the group of
direct transcripts, Figure 5 suggests that di�erent classes of transcripts have di�erent e�ects on
protein quantities. For example, snRNA, which functions in the spliceosome to process pre-RNA, have
almost no speci�c impact on protein quantity prediction and are found in the unimpactful,
uncorrelated transcript category. Messenger RNAs generally have a high impact on predictive
function. Long non-coding RNAs seem broadly more impactful for a gene’s quantity, whereas the
importance of pseudogenes appears to depend on their state of processing. Only a small subset of
microRNAs (1%) were important for predicting this set of proteins, supporting their role in speci�c
biological regulation.



Conclusion

This study demonstrates the potential of NAS and deep learning in optimizing protein quantity
predictions from transcriptome data. The results highlight the importance of incorporating biologically
relevant features and the need for further research into the development of more accurate and
e�cient models. By leveraging the strengths of these approaches, we can gain a better understanding
of the complex relationships between di�erent omic layers and make signi�cant progress in the �eld
of proteogenomics.
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Supplementary Materials

Figure 6 - �gure supplement 1:  Comparing all dataset use in training vs. only target dataset use in training. A
100x2 cross validation applied to the target dataset in question. In the justTargetDataset runs, no additional changes
were made. In the allDatasets runs, the training data was supplemented with all full non-target datasets.



Figure 7 - �gure supplement 2:  Manually designed neural network architecture. Prior to Neural Architectural
search optimization, a simple three-layer network with leaky relu activation functions was trained on the CPTAC
datasets.



Figure 8 - �gure supplement 3:  Comparison of four model types via 100x2 cross validation with full whisker
coverage. A rendition of �gure 1E, but with full whisker coverage.
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Figure 9 - �gure supplement 4:  Model interpretation evaluating transcript impact on speci�c protein
predictions. SHAP analysis was performed for several of the most well-predicted proteins using all samples in the
dataset. A kernel density graph (KDE) was plotted for mean absolute SHAP (y axis) versus spearman coe�cient (x axis)
for each transcript’s relation to (A) CAVIN1, (B) FERMT2, (C) FLNA, (D) HCLS1, (E) HK3, (F) MCM3, (G) MCM4, (H) MCM6, (I)
MMP14, (J) P4HB, (K) PTPN6, (L) SMC2, (M) STAT1, and (N) VCL proteins speci�cally.

category direct correlated uncorrelated noCount

IG_V_gene 69 62 14 0

IG_V_pseudogene 0 26 149 8

TEC 0 739 271 6

TR_V_gene 0 83 23 0

lncRNA 0 10851 5539 112

miRNA 0 8 497 668

misc_RNA 0 386 641 11

processed_pseudogene 0 4275 5760 144

protein_coding 7743 10700 1438 18

rRNA_pseudogene 0 6 370 113

snRNA 0 68 1186 409

snoRNA 0 164 110 54

transcribed_processed_pseudogene 0 352 145 4

transcribed_unitary_pseudogene 0 114 41 0

transcribed_unprocessed_pseudogene 0 654 254 7

unprocessed_pseudogene 0 649 1820 78

Supplement Table 1: Biological function categorization of transcripts for each experimental predictive
category. {#tbl:transcript-function}
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